Drug-Resistant TB Update
Can we do better?
(p.s. thank goodness for Barbara :)

Lisa Chen MD
Professor of Medicine, UCSF
4 Corners/Moab, December 5, 2017
Overview

...trials and tribulations of being an optimist....

• New US CDC/ATS/IDSA/ERS DR-TB Guidelines
• Can we shorten treatment duration?
 – 9-12 mo “Bangladesh” MDR shorter treatment regimen
 – “Union” 9-country observational study
 – Preliminary results of STREAM trial (& NIX?)
• Are we using the best drugs?
 – Reflecting on use of second-line injectable agents
• Something practical – new tools to try
one person’s story
(we all have many)

30 yo F from Vietnam – recent arriver, ESL student

• May 2016: Resistant to INH, RIF, Strep, EMB
 – Initial Tx: MFX-LZD-AM-PZA-ETO-PAS (multiple changes)
 – Culture converted mo2, +/- good CXR response
 – Depression since dx, severe N/V, socially isolated, injection site pain (declined PICC), rash, peripheral neuropathy, early optic neuritis (LZD just stopped)

• Only 14mo post-culture conversion (total 16mo to date), need to change rx again…continue push…..
......so can we go shorter?
MDR-TB Treatment Duration

WHO 2011 DR-TB Guidelines (& 2016)

Based on individual patient data meta-analysis:

Recommendations:

• Intensive phase: at least 8 months
• Total duration: at least 20 months (if no prior rx for MDR; if prior MDR rx at least 24 months)

Standardized WHO regimen: 5 drugs (including PZA)

• Example: FQ-IA-ETO-CS-PZA
• [Access to resistance testing often limited/variable]
MDR-TB Treatment Duration: U.S.

• 2003 ATS/CDC/IDSA guidelines: 18-24 mo (new DR-TB guidelines pending)

2016 CITC Survival Guide v3 – Expert consensus:
Utilize culture conversion to help guide minimum duration within U.S. high-resource setting

• Intensive phase: at least 6 mo beyond culture conversion for use of injectable agent
• Total duration: at least 18 months beyond culture conversion

[U.S. highly individualized regimen – using 4-6 (optimally 5) likely effective drugs]
Short standardized regimens for MDR

Prospective observational study: 6 sequential regimens resulted in identifying highly effective 9mo regimen

N=206
Completion 5.3%
Cure 82.5%
Success 87.8%
Default 5.8%
Failure 0.5%
Death 5.3%
Relapse 0.5%

1+2: Oflo-based, Pth plus INH throughout
3: Oflo-based, Pth throughout, no INH
4: Oflo-based, Pth intensive phase, INH throughout
5: Oflo-based, Pth intensive phase, INH and Clo throughout
6: Gati-based, Pth and INH intensive phase, Clo throughout

Treatment Outcomes in Patients with MDR-TB, 2007-2012 Cohorts

WHO, Global Tuberculosis Report 2015
Shorter course “Bangladesh” regimen

KJM Aung et al. Int J Tuberc Lung Dis 2014;18(10)

Nine (to 12) month MDR regimen: n=515

- 4 mo: GFXHD-CFZ-EMB-PZA + KM-PTO-INHHD
- 5 mo: GFXHD-CFZ-EMB-PZA
 (Extended intensive phase if delayed smear conversion)

- 2005-2011: **Treatment success 84.4%**
 - Strongest risk for unfavorable outcome was FQ resistance
 (particularly if also initial PZA resistance)

- Endorsed for use in **WHO 2016 guidelines**
- Encouraged further studies:
 - 9-country observational study (Union)
 - STREAM trial/RCT
2016 WHO Policy Recommendation
MDR-TB Shorter Treatment Regimen (STR)

Recommendation:
In patients with RR or MDR-TB
• who have not been treated with second-line drugs (> 1mo) and
• in whom resistance to FQs and SLI agents has been excluded or is considered to be highly unlikely

a shorter MDR-TB regimen of 9-12 mos may be used instead of a conventional regimen*

(conditional recommendation, very low certainty in the evidence)

*Additional: Not to be used if resistant/intolerant to medicines in the regimen (except INH), pregnant, or extrapulmonary
Treatment Success*

Shorter vs. Conventional Regimens

IPD data (6 studies) evaluated for WHO 2016 guidelines

<table>
<thead>
<tr>
<th>Resistance pattern</th>
<th>Shorter MDR-TB Regimen (N=1116)</th>
<th>Conventional MDR-TB Regimen (N = 5850)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cases</td>
<td>90.3%</td>
<td>78.3%</td>
</tr>
<tr>
<td>PZA susceptible; FQN susceptible</td>
<td>96.8%</td>
<td>83.5%</td>
</tr>
<tr>
<td>PZA resistant; FQN susceptible</td>
<td>88.8%</td>
<td>81.4%</td>
</tr>
<tr>
<td>PZA susceptible; FQN resistant</td>
<td>80.0%</td>
<td>64.4%</td>
</tr>
<tr>
<td>PZA resistant; FQN resistant</td>
<td>67.9%</td>
<td>59.1%</td>
</tr>
</tbody>
</table>

*Treatment success – cure or completed

WHO 2016 Update

Decreasing success
Treatment outcomes with a short multidrug-resistant TB regimen in nine African countries

Trebuchet al. IJTID ePub: Nov 17, 2017

- Union sponsored study - West/Central Africa: Benin, Burkina Faso, Burundi, Cameroon, Central African Republic, Cote d’Ivoire, Democratic Republic of the Congo, Niger, and Rwanda
- Prospective observational study design
- 9mo “Bangladesh” regimen: 7-drug intensive (4mo) + 4-drug continuation (5mo)
 - MODIFIED: Substituted GFXHD with \textit{standard dose} MFX
- 1006 adult MDR patients (20% HIV+)
- Inclusion: Rif-resistant (Xpert/LPA or in-country phenotypic DST)
- Exclusion: Prior second-line rx, known pre-/XDR, pregnant, known drug intolerance, baseline QT>500ms
Treatment outcomes with a short multidrug-resistant TB regimen in nine African countries (2) Trebuchet et al. IJTID ePub Nov 17, 2017

Results*:

- 72% Cure + 9% Treatment complete = 82% Tx Success
- 6% Failure
- 8% Death
- 5% LTFU
- (relapse data pending – future publication)

• HIV > death overall; among survivors – no difference tx success
• Supra-national DST/sequencing analysis (58% cases)
 - FQ resistance associated with failure
 - No bacteriologic influence by PZA, PTO, EMB resistance**
• Notable adverse effect: 11% hearing loss (4 mo injectable)

*[Note: 56% low BMI, 65% extensive CXR (>1/2 lung fields)]
**Multivariate analysis of individual effect (remove influence of FQ-resistance)
STREAM Trial stage 1: Design (1)

• Multi-country, randomized-controlled trial, non-inferiority design (began July 2012)

• Evaluate safety and efficacy of “modified” Bangladesh 9mo regimen (MFX^{HD} replaced GFX^{HD})
 – ↑ safety/monitoring evaluation for higher dosing MFX

• Study: 7-drug (7d/wk) intensive + 4-drug continuation
 – $9mo(MFX^{HD*}-CFZ-EMB-PZA) + initial 4mo(INH^{HD*}-PTO-KM)$
 (extended intensive 1-2mo if delayed smear conversion)

• Control: 5-drug (20-24mo)
 – Locally-used WHO 2011 standardized regimen
 (ex. FQ-IA-CS-ETO-PZA)

*High Dose weight-based (may not be consistent with common US practice)
STREAM Trial stage 1: Design

- Inclusion: adult, Sm+ Mtb, RIF-resistant (Xpert/LPA or phenotypic DST)
 - 2nd line LPA done for all +RIF resistant
 - On ART if found HIV+
- Exclusion: pre-/XDR, pregnant/breastfeeding, QTc >500, AST or ALT >5xULN, extrapulmonary, critical condition (clinician opinion unsafe)

Nunn et al. Trials 2014, 15:353
STREAM Trial stage 1: Design (3)

• Enrollment 2:1 study vs. control arm
 – Higher study arm for more safety & efficacy data

• Power calculation:
 – Assumed under research conditions that control will do better (70% success rather than 65% assumed efficacy); study arm might not perform as well outside of Bangladesh (75% compared with published 85%); non-inferiority margin 10%
STREAM Trial stage 1: **Preliminary Results** (1)

Preliminary results shared at IUATLD/Guadalajara, October 2017 (final early 2018)

- Sites: Ethiopia, Mongolia, South Africa, Vietnam
- \(N = 424 \) MDR-TB patients (33% HIV+)
- Primary efficacy outcome:
 - Favorable outcome at 132 wks
 - Unfavorable outcome: +culture at 132 wks, restarting treatment, death (any cause), LTFU before 15 mo

Lancet online: 48th Union World Conference on Lung Disease; October 23, 2017
http://dx.doi.org/10.1016/S221302699(17)30423-X; & conference notes
STREAM Trial stage 1: *Preliminary Results* (2)

Favorable outcome:
- 78.1% in 9 mo regimen
- 80.6% in 20-24 mo standard regimen

9 mo regimen did not have statistically significant non-inferiority

Deaths: More deaths (all cause) in study arm, but not statistically significant
- 8.5% in 9 mo regimen
- 6.4% in 20-24 mo standard regimen

Lancet online: 48th Union World Conference on Lung Disease; October 23, 2017
http://dx.doi.org/10.1016/S2213-0269(17)30423-X; & conference notes
STREAM trial stage 1: Discussion (1)

Study leads (www.tbonline.info/posts/2017/10/13):

• 9 mo regimen did as well or even better than expected
• BUT … “20 mo regimen did much better than routinely reported outcomes from program settings…..more patients completed than we know is often the case in most real-life settings”
STREAM trial stage 1: Other results

Preliminary:

- **Adverse events:** incidence of grade 3-5 adverse events similar between two regimens
 - 46% in 9mo regimen
 - 45% in 20-14mo regimen
- **Health economic analysis:** reduction in direct costs to patients (fewer visits, reduced supplementary food costs, quicker return to work)
- **Reduced pill burden** by 1/3 in 9mo regimen
STREAM trial stage 1: Discussion (2)

Overall, in terms of global MDR context: Conference discussion - still a successful regimen

- Patient/advocate point of view: Only 9mo of therapy highly desirable, results great compared to real program performance......in regards to 2% difference in favorable results.... “when I brought home a test score of 78%, my family would still slaughter a goat”

- Await final report in 2018........
What are implications for US practice? (1)

Success rates using US standard of care (using highly individualized regimen strategies) are higher: (Marks et al, Emerging Infectious Diseases May 2014)

- Program performance CA/NYC/TX (2005-2007); n=130
 - Treatment completion 78%
 - Death 9%
 - LTFU 2%
 - Failure/relapse 0% (but 1% stopped due to AE)
 - Transfer out 9%
- Case-management/DOT approx. 90%
- Expert consultation 81%
- **Median duration:** Resistance pattern - INH/RIF 20mo, INH/RIF +more 24mo, Pre-XDR 25mo, XDR 32mo
What are implications for US practice? (1)

Access to extensive (rapid) genotypic & phenotypic DST
- Includes molecular tests for EMB & PZA (known issues with growth-based DST reliability/confidence)

⇒ Using strict WHO recommendations, low numbers would qualify for short MDR regimen
 - CA data 2009-2015: n=171 (with full DST and including \(inhA \) mutation inferring ETO-R) only 14% eligible for STR (Barry et al, AJRCCM Dec 2017)
 - European data suggest only 8% eligible for STR (Lange et al, AJRCCM Oct 2016)
Population model: Projected Incidence of MDR-TB with Different Regimens

Population-level implications of scale-up:
Assumptions: Short-course regimen would double treatment access and achieve long-term efficacy seen in cohort studies

Population model: Projected Incidence of MDR-TB with Different Regimens

BUT – if assumptions: 30% of MDR-TB case ineligible

Many questions in need of answers...

• Why does this combination work (despite documented resistance to some drugs)?
 – Synergy? Mixed populations?

• Would it work better if we could substitute based on *known sensitivity with better drugs*?

• [List could go on…….]

STREAM Trial stage 2

Comparisons (expected completion 2019?)
Regimen A: Locally-used WHO 2011 regimen
Regimen B: Modified Bangladesh (9mo)
Regimen C: 7-drug all oral regimen (9mo)
 9mo: BDQ-CFZ-EMB-LFX-PZA (+ 4mo intensive phase adds INHHD-PTO)
Regimen D: Shorter 6-drug (6mo)
 6mo: BDQ-CFZ-LFX-PZA (+ 2mo intensive phase adds INHHD-KM)
Nix-TB Trial: Pretomanid-BDQ-LZD for XDR

Participants are required to have documented XDR-TB, or MDR TB treatment intolerance or failure (TI or Fr)

Pretomanid 200 mg
Bedaquiline 200 mg tiw after 2 week load
Linezolid 1200 mg qd*

6 months of treatment
Additional 3 months if sputum culture positive at 4 months
Follow up for relapse-free cure over 24 months

*Amended from 600 mg bid strategy

(Preliminary data announced Oct 2017, IUATLD)

From TB Alliance: Conradie et al, CROI presentation/Seattle Feb 2017
Time to reconsider favored status of injectables?

(Reuter et al, IJTLD Nov 2017)

• Review of efficacy, safety and tolerability of IA
 – One small RCT (1940’s) of streptomycin monotherapy
 – Observational cohort data support IA use – but variable
 – Large >9000 pt. IPD (Ahuju 2012) – no association between use of any IA and probability of treatment success
 – Significant evidence for disability due to hearing loss (lack of audiometry, underappreciated, progression post-rx)

• Growing confidence/data on efficacy and AE management for new (BDQ, DLM) and repurposed (LZD, CFZ) drugs
 – Stronger RCT + observational study data
…one woman’s take (for what its worth)…..

• 9-12 month regimen could be considered in select cases that meet current WHO criteria (don’t use if resistance to drug in regimen)……and wait for more data

• Shorter MDR duration is feasible - we probably treat longer than we need in many (not all) cases

• We should employ strategies to use our better new & repurposed drugs more often (advocate for better access)

• Wishlist: Clinical study designs that captures key components of US-based care strategies:
 – ie. duration dependent on parameters of response to treatment, # of drugs reflect relative efficacy of drugs available to use, consideration of co-morbidities and extent of disease?
…..now for some practical tools

Fruita, Utah
what’s the catch with our new BFF(?)

drugs for DR-TB?

- Bedaquiline
- Moxifloxacin
- Clofazamine
- (Delaminid)
Brush up on QTc calculation

- Recommended to do manual read if QTc abnormal (or borderline)
- **Fredericia** method is preferred (used in phase II BDQ & DLM trials)

Guidance on requirements for QTc measurement in ECG monitoring when introducing new drugs and shorter regimens for the treatment of Drug-resistant Tuberculosis

...helpful hints for manual read...

Defining end of T-wave using maximum slope intercept; Use leads II, v5 or v6 (choose best view T wave)
Calculators/nomogram for QTc

- Many phone or online apps to do calculations
- Or use nomogram

\[
\text{QTcF} = \frac{QT}{3 \sqrt{RR}}
\]

Example calculation using the nomogram

- Heart rate: 75 bpm
- R-R interval: 320 msec

Results

- Corrected QT interval: 345 msec
Nursing Job Aid: DR-TB Adverse effects

Made by nurses for nurses:

• Reviewed key reference documents which summarized common side effects of second-line anti-TB drugs
 – WHO Companion Handbook (WHO 2011 guidelines)
 – Partners In Health Guide to the Medical Management of MDR-TB
 – CITC Drug-Resistant TB Survival Guide v3
• Reviewed nursing literature for each of the symptoms
• Input from nurses experienced in caring for MDR-TB
Job Aid Structure: Presenting Symptoms

<table>
<thead>
<tr>
<th>SYMPTOM(s)/POTENTIAL TOXICITY</th>
<th>POSSIBLE OFFENDING DRUG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some combination of the following symptoms:</td>
<td>Anti-TB: Cs, FQs (Lfx, Mfx), Inh, Eto/Pto</td>
</tr>
<tr>
<td>Mood changes, agitation, irritability, difficulty concentrating, and/or sleep disturbances</td>
<td>ARVs: EFV</td>
</tr>
<tr>
<td>CENTRAL NERVOUS SYSTEM (CNS) TOXICITY:</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td></td>
</tr>
</tbody>
</table>

- Presents symptoms that a patient may express during treatment
- Indicates the potential toxicity: diagnosis associated with these presenting symptoms
- Lists possible TB and/or anti-retroviral (ARV) drugs associated with the symptom(s)/toxicity
Job Aid Structure: Nursing Assessment

NURSING ASSESSMENT

Observe for and refer immediately if the patient shows signs of acute depression or reports thinking of hurting him/herself.

Ask the patient:
- When did you first notice these symptoms?
- Have you had thoughts of hurting yourself or that you would be better off dead?
- Other psychosocial stressors?

Check for signs of depression:
- Where available, use a depression screening tool (baseline and monthly if patient is taking Cs)

Check:
- Recent TSH result

• What to observe for?
• What questions to ask the patient?
• What tests or evaluations should the nurse check for?
Job Aid Structure: Nursing Interventions

- Urgent action to take when indicated (criteria provided)
- Information to cover in counseling the patient
- When to bring to the doctor’s attention and what questions to raise with the doctor regarding potential medical interventions

<table>
<thead>
<tr>
<th>NURSING INTERVENTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek urgent medical evaluation when signs of acute depression or suicidal ideation.</td>
</tr>
<tr>
<td>Counsel the patient (and family):</td>
</tr>
<tr>
<td>• To watch for and report any changes in the patient’s mood or behavior</td>
</tr>
<tr>
<td>• Importance of avoiding alcohol use while on MDR-TB treatment (detox/rehab if indicated)</td>
</tr>
<tr>
<td>When a patient shows signs of depression, discuss with the doctor and/or social worker:</td>
</tr>
<tr>
<td>• How to address other psychosocial stressors if present</td>
</tr>
<tr>
<td>• Whether antidepressant therapy is needed</td>
</tr>
<tr>
<td>• Whether dose of Cs can be decreased</td>
</tr>
<tr>
<td>• Psychiatric evaluation</td>
</tr>
</tbody>
</table>
Job Aid Structure: Comments

- Provides additional information on potential causes of the symptom(s)
- May provide location for additional resources
- May provide information on related considerations for management

COMMENTS

Severe depression can be seen in 2.4% of patients receiving EFV. Consider substitution of EFV if severe depression develops.

Some situational depression can be expected for patients who have been dealing with the challenges accompanying DR-TB and treatment.

Some patients taking Cfx with resulting skin color changes have experienced reactive depression.

PHQ-9 depression screening tool translated in multiple languages:
Nursing Job Aid: Pilot Test

Development/support:

International Council of Nurses
- Carrie Tudor (ICN)
- Ann Raftery (CITC)
- Lisa True (CADPH)
- Catalina Navarro (HNTC)

[Multiple country support contributors for local adaptation, translation, and pilot process]

Pilot Test Locations:
- China
- Russia
- Mexico
- USA
- Uganda
- Tanzania
- Zambia - underway
- Indonesia - underway
- Thailand - underway
Heartland MDR-TB Care Plan

MDR TB CARE PLAN

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Initiation of Treatments</th>
<th>Month 1</th>
<th>Month 2</th>
<th>Month 3</th>
<th>Month 4</th>
<th>Month 6</th>
<th>Month 9</th>
<th>Month 12</th>
<th>Month 18</th>
<th>Month 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXR-PA/Lat. Compare to old film</td>
<td>Consider CT & alternate views</td>
<td>Consider CXR</td>
<td>CXR</td>
<td>CXR</td>
<td>Consider CT</td>
<td>CXR</td>
<td>Consider CT</td>
<td>CXR</td>
<td>Consider CT</td>
<td></td>
</tr>
<tr>
<td>TST/Report case</td>
<td>Physician assessment q 1-2 wks</td>
<td>Physician assessment</td>
<td>Physician assessment q 1-2 wks</td>
</tr>
<tr>
<td>Baseline</td>
<td>Update drug o-gram</td>
</tr>
<tr>
<td>Baseline TSH</td>
<td>CBC, BUN, Cr, LFT's, Ca, Mg, HB, HCV, glucose</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
<td>CBC, BUN, Creat, LFT's, K, Ca, Mg at least q 3 months</td>
</tr>
<tr>
<td>Review prior lab: CBC, BUN, Cr, LFT’s, 24 hr Cr, Ca, Mg, HB, HCV, glucose</td>
<td>If positive CD4, viral load</td>
<td>If positive evaluate for treatment</td>
</tr>
<tr>
<td>Review prior sputum results. Repeat sputum smear & culture</td>
<td>Sputum q a.m. x 3 days</td>
</tr>
<tr>
<td>Review susceptibility, request extended susceptibility test</td>
<td>Repeat susceptibility if sputum positive</td>
</tr>
<tr>
<td>Infection control isolation</td>
<td>Continue until culture negative x3</td>
</tr>
<tr>
<td>Aminoglycoside and/or Capreomycin IV (IM) 5 day/wk</td>
<td>Peak/trough drug level</td>
</tr>
<tr>
<td>4-6 oral drugs</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
<td>Peak drug levels 2 hrs post dose (PAS 6 hr)</td>
</tr>
<tr>
<td>DOT initiated/patient educated</td>
<td>Educate as needed</td>
</tr>
<tr>
<td>Pyridoxine 100mg</td>
<td>As long as ethionamide, linezolid, or cycloserine given</td>
</tr>
<tr>
<td>Baseline weight & height</td>
<td>Calculate BMI</td>
<td>Weigh weekly</td>
<td>Weigh monthly</td>
</tr>
<tr>
<td>Nutritional assessment</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
<td>Nutritional supplement as needed (no milk products, aluminum, Ca, Mg containing antacids, iron or OVI's within 2 hours of Furazolidone)</td>
</tr>
<tr>
<td>Audiogram/VESTIBULAR screen</td>
<td>Continue monthly as long as aminoglycoside/caprormycin given</td>
</tr>
<tr>
<td>Vision screen</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
<td>Continue as long as ethambutol, rifabutin, linezolid, clofazamine given</td>
</tr>
<tr>
<td>Substance abuse/psychosocial factors influencing compliance</td>
<td></td>
</tr>
<tr>
<td>Education needs/Completion of Assess & Address contact evaluation with health department</td>
<td></td>
</tr>
</tbody>
</table>

*Repeat clearance if decreased & adjust medications (aminoglycosides, capreomycin, ethambutol, FIA, levofloxacin, cycloserine)
† For patients at high risk for MDR-TB request rapid molecular assay for drug resistance (consultation required)

This publication was supported by the Cooperative Agreement Number U52PS004087-01 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention.
...thankfully it can all work
Let’s just do it better

January 2012: 33 kg

July 2012: 59 kg
thank you

Acknowledgements: Chuck Daley, Pennan Barry, Neha Shah, Bob Horsburgh, Barbara Seaworth, Ann Raftery, Stephanie Siedel