Introduction to Interventional Pulmonology

Alexander Chen, M.D.
Director, Interventional Pulmonology
Assistant Professor of Medicine and Surgery
Divisions of Pulmonary and Critical Care Medicine and Cardiothoracic Surgery
Washington University School of Medicine
Objectives

- What is Interventional Pulmonology
- Introduction to selected procedures
- Describe relationship with Respiratory Therapy
Beginnings
Foreign Body Aspiration

• 1897 Gustav Killian uses a rigid esophagoscope, long forceps and a head mirror to remove a bone from the right mainstem bronchus
Rigid Core Out
Rigid vs. Flexible Bronchoscopes

- Airway control when working on central lesions
- Better and faster for larger airway obstructions
 - Rigid “core-out”
- Able to deploy metal and silicone stents

- Accepts majority of modes of tumor destruction
- Able to examine beyond subsegmental level
- Conscious sedation
- Able to deploy metal stents
Modes of Tissue Destruction

- Manual debulking
- Argon plasma coagulation
- Nd:YAG laser
- Cryotherapy
- Electrosurgery
- Brachytherapy
- Balloon dilation
Airway Stent for Intrinsic Airway Obstruction

• Stent used to physically displace endobronchial disease
What Is An Interventionalist?

- Defined by rigid bronchoscopy?
- What procedures are being performed by pulmonologists?
 - Bronchoalveolar lavage
 - Transbronchial biopsy
 - Transbronchial needle aspiration
What Are Pulmonologists Doing?

• 2003 ACCP review of practicing pulmonologists revealed
 – Inadequate training in advanced bronchoscopy
• Guidelines set to establish competency regarding chest procedures

Ernst et al. *Chest*, 2003
Birth of Interventional Pulmonologists?

- So called “proceduralists”
- “Interventional” pulmonologists continue training in rigid bronchoscopy and pleuroscopy
- Shift from therapeutic to diagnostic tools

Endobronchial Ultrasound (EBUS)
Central Lesions
What Would You Do?
Diagnosing the Mediastinum

- Mediastinoscopy
- Bronchoscopy with conventional transbronchial needle aspiration (TBNA)
- Curvilinear array endobronchial ultrasound (EBUS) assisted transbronchial needle aspiration
Transbronchial Needle Aspiration
“Blind” TBNA

- 2003 meta-analysis found an overall sensitivity of 55% for diagnosing NSCLC1
- 2007 review by ACCP found an overall sensitivity of 78% (range 14-100%)2
- False negative rate approximately 28%

1Holty et al. Thorax 2005;60:949-955
2Detterbeck et al. Chest 2007;132:202S-220S
EBUS-TBNA
EBUS-TBNA for Mediastinal Nodes

<table>
<thead>
<tr>
<th>Study</th>
<th>Number (N)</th>
<th>Lymph Tissue Present (%)</th>
<th>Diagnostic Yield (%)</th>
<th>PPV For Malignancy (%)</th>
<th>NPV For Malignancy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herth et al Chest 2003</td>
<td>242</td>
<td>86%</td>
<td>71%</td>
<td>100%</td>
<td>22%</td>
</tr>
<tr>
<td>Herth et al Chest 2004</td>
<td>50</td>
<td>84%</td>
<td>74%</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Herth et al Thorax 2006¹</td>
<td>572</td>
<td>94.5%</td>
<td>93.5%</td>
<td>100%</td>
<td>11%</td>
</tr>
</tbody>
</table>

NR=not reported

¹=Linear array endobronchial ultrasound used
Advantages of Convex Probe EBUS

• Allows diagnosis and staging of cancer with one procedure
• Direct visualization of aspiration of lymph nodes/masses
• Fewer passes required
• Avoid blood vessels
• Sensitivity, specificity, negative predictive value at least as good as mediastinoscopy

1Ernst et al. J Thorac Onc 2008;3:577-582
Pulmonary Nodules
What Would You Do?

- Surgical biopsy
- Transthoracic needle biopsy
- Bronchoscopic biopsy
 - Conventional TBBx
 - Electromagnetic Navigation
 - Radial Endobronchial Ultrasound
CT Guided Needle Aspiration

- Diagnostic yield 80-90%
- Rate of pneumothorax 8-64%
 - Chest tube
 - Hospitalizations
 - Prolonged air leak
Electromagnetic Navigation

- “GPS” system for the lungs
- Virtual airway reconstruction
 - Based on thin slice CT
- EM sensor tracked during procedure
Procedure Display
EBUS for Peripheral Pulmonary Lesions

- Utilizes radial ultrasound probe
- 1.7mm probe inserted through the working channel of a therapeutic bronchoscope
Convex Probe vs Radial Probe

Convex Probe EBUS

Radial Probe EBUS
Radial EBUS
Interventional Pulmonology: Current Status

• Continued efforts towards improving minimally invasive diagnostic and staging techniques
• Increasing emphasis on bronchoscopic treatments for chronic medical illness
Emphysema
Emphysema

- Medication
- Pulmonary rehabilitation
- Lung transplantation
- Lung volume reduction surgery
Lung Volume Reduction

- NETT demonstrated palliation and survival benefit for subsets of patients with emphysema undergoing LVRS
- Significant associated morbidity, mortality and cost
- Minimally invasive techniques to achieve similar effects to LVRS desirable

Herth FJ et al. Respiration 2011
Bronchoscopic Lung Volume Reduction

• One way valves designed to induce lobar atelectasis
• Heterogeneous emphysema
• Homogeneous emphysema
Bronchoscopic View

Exhalation Inspiration

Strange et al. BMC Pulmonary Medicine 2007
Other Devices for BLVR

- Foam
- Steam
- Coils
- Airway Bypass

Slebos DJ, et al. CHEST 2011
Bronchopleural Fistula
Bronchopleural Fistula
Bronchopleural Fistula
Valve Deployment
Asthma
Asthma

- Disorder of airway inflammation
- Majority of airway resistance occurs in the larger airways
- Airway smooth muscle may be hypertrophied in asthmatics
- May contribute to bronchoconstriction during asthma attack
Bronchial Thermoplasty

- Delivery of controlled thermal energy to the airway wall
- Decreases ASM
- Attenuating bronchoconstriction
Health Care Utilization for Respiratory Symptoms During Post-Treatment Period

- 6 weeks after the last bronchoscopy procedure to 12 month follow-up

* Posterior Probability of Superiority = 95.6%
** Posterior Probability of Superiority = 99.9%

- Severe Exacerbations (Steroid): 32% decrease over Sham
- Unscheduled Physician Office Visits: 22% decrease over Sham
- Emergency Room Visits: 84% decrease over Sham
- Hospitalizations: 73% decrease over Sham

BT = Bronchial Thermoplasty

Interventional Pulmonary and Respiratory Therapy

• Dedicated assistance with pulmonary procedures
• Background in respiratory mechanics
• Pre and post-procedure care of patients undergoing pulmonary procedures
• Assistance with improving current methods and developing new technology