Five Consecutive Cases when VATS Surgical Lung Biopsy Improved Outcome

J. Terrill Huggins, MD Associate Professor of Medicine Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine Medical University of South Carolina

Disclosures

- Advisory Board: InterMune Boerhinger Ingelheim iBIOs
- Grants:
 - InterMune Boerhinger Ingelheim Roche
 - Gilead
- Consulting: InterMune Gilead

- 54 yo $\stackrel{\frown}{=}$ with dyspnea over 1 month
- 1 week of bilateral, pleuritic chest pain
- No past medical history
- No known exposures

Hematoxylin-eosin stain

Riemer E.

Pleuroparenchymal Fibroelastosis (PPFE) An Official American Thoracic Society/European Respiratory Society Statement: Update of the International Multidisciplinary Classification of the Idiopathic Interstitial Pneumonias

- "Rare IIPs"
 - Idiopathic Lymphoid Interstitial Pneumonia
 - Idiopathic Pleuroparenchymal Fibroelastosis

Travis et al. Am J Respir Crit Care Med 2013.

PPFE

 Amitani – "Idiopathic upper lobe fibrosis" in 1992

– Other cases described prior in 1960's

 Frankel in 2004, 5 patients at National Jewish → PPFE

> Amitani R, et al. *Kokyu* 1992. Frankel SK, et al. *Chest* 2004.

Pleuroparenchymal Fibroelastosis: Its Clinical Characteristics

Idiopathic PPFE Radiation Anticancer chemotherapy Bone marrow- or stem cell-transplantation Lung transplantation Occupational dust exposure Asbestos Aluminum Infection Aspergillus Mycobacterium avium-intracellulare Hereditary PPFE ~ PPFE with family history Autoimmune diseases Rheumatoid arthritis Ulcerative colitis **Psoriasis** Ankylosing spondylitis Hypersensitivity pneumonitis

Watanabe K. Curr Respir Med Rev 2013.

Pleuroparenchymal Fibroelastosis: Its Clinical Characteristics

No gender preponderance
Age at onset
Wide-ranging, younger than in idiopathic pulmonary fibrosis (IPF)
Smoking history
Unrelated to the incidence of PPFE
Clinical symptoms
Exertional dyspnea and dry cough with insidious onset
Chest pain due to pneumothorax
Loss of body weight
Physical findings
Slender stature and flattened thoracic cage
Crackles sometimes audible
Serum biomarkers
KL-6 within the normal or around the upper normal limit
Elevated Surfactant protein D (SP-D)
Autoantibodies such as rheumatoid factor and antinuclear antibody sometimes elevated
Prognosis
Wide-ranging in each case studies from slowly progressive with 10 - 20 years of presentation to rapidly progressive course
Poorer prognosis of secondary PPFE such as transplantation- associated PPFE

Watanabe K. Curr Respir Med Rev 2013.

10

PPFE

Watanabe K. Curr Respir Med Rev 2013.

Reddy TL, et al. *Eur Respir J* 2012.

Watanabe K, et al. *Respir Investig* 2012.

Pleuroparenchymal Fibroelastosis: Its Clinical Characteristics

Chest Radiograph

Abnormally narrowed anterior-posterior thoracic dimension (flattened thoracic cage)

Elevated hilar opacities

Reticular and nodular opacities in the bilateral upper lung fields

Fibrocystic opacities in the upper lung fields and occasional reticular opacities in the lower lung fields in the advanced stage

Chest CT

Initial stage:

Subpleural nodular and reticular opacities in the apex, but minimal changes in the middle and lower lobes

Advanced stage:

Fibrotic opacities with traction bronchiectasis extending to adjacent lobes with multiple bulla and large cysts at the upper lung fields

Occasional subpleural reticular opacities in the bilateral lower lobes resembling usual interstitial pneumonia (UIP)

Pleuroparenchymal Fibroelastosis: Its Clinical Characteristics

Ventilatory Impairment

Decreased FVC

Increased FEV₁/FVC (%)

Decreased TLC

Increased RV/TLC (%)

Gas Exchange Impairment

Decreased DLco

Normal or minimally decreased DLco/VA

Watanabe K. Curr Respir Med Rev 2013.

Frankel SK. Chest 2004.

Frankel SK. Chest 2004.

Von der Thusen. *Curr Respir Med Rev* 2013

PPFE

- Histologic criteria
 - Upper zone fibrosis of visceral pleura
 - Prominent, homogenous, subpleural fibroelastosis
 - Sparing of parenchyma distant from pleura
 - Mild patchy lymphoplasmocytic infiltrates
 - Small numbers of fibroblastic foci

PPFE vs IPF

- UIP pattern found in lower lobes of PPFE
- 2X more elastic fibers in PPFE than IPF
- Upper lobe
- Alveolar architecture preservation
- Lack of fibroblastic foci adjacent to fibrosis

Enomoto N, et al. *BMC Pulm Med*. 2014 Reddy TL, et al. *Eur Respir J*. 2012

PPFE

Treatment:

- Refractory to steroids & immunosuppression
- 02
- ?Pirfenidone
- ?Target inhibition of elastosis

Watanabe K. Curr Respir Med Rev 2013.

PPFE - pearls

- One of the rarest forms of IIP
- Mid-lung & upper lung zone pleural and parenchymal abnormalities
- Distinctive histopathologic findings
 - Intense pleural fibrosis
 - Subpleural parenchymal fibroelastosis
 - Upper lobe predominance
 - Sparing of lung distant to pleura
- May see UIP at bases in advanced disease
- No good therapy

• HPI:

- -70 y/o male
- Bx proven NASH cirrhosis and heptocellular carcinoma
- Abnormal Chest CT
- Needs a liver transplant

- PMHx: Type 2 DM, HCC, NASH cirrhosis, hypothyroidism, HTN
- Surgical Hx: Rotator cuff, inguinal hernia
- Family History: N/C
- Social History:
 - Life-long non-smoker
 - No alcohol or illicit drugs
 - No TB, pets, birds or other exposures

 Home medications: Atenolol 25 mg daily Levothyroxine 50 mcg daily Vitamin E 400 IU daily Lisinopril 20 mg daily

- P/E:
 - V/S: 98.0 F, 56, 16, 98% on RA
 - Findings noted only for ascites, palmar erythema, and gynecomastia

 Chest CT 8 mm and 6 mm, non-calicfied nodules in LUL (noted 3 months prior and stable)

Chest CT

Chest CT

- PFTs:
 - FVC: 123% of predicted
 FEV1: 104% of predicted
 DLCO: 100% of predicted

• What should we do next??

VATS wedge resection of LUL performed

Pathology

Diagnosis: Cryptogenic organizing pneumonia

 Outcome: Successful orthotropic liver transplantation

- CC: "I have a little bit of everything"
- HPI:
 - 32 y/o female
 - No past medical history
 - Cold

- Progressively worsening shortness of breath

- Admitted to outside hospital

- PMHx: denies any medical problems
- Surgical Hx: no prior surgeries
- Family History: no illnesses
- Social History:
 - Quit smoking 9 months ago
 - No alcohol or illicit drugs
 - No TB, pets, birds or other exposures

- ROS
 - Fatigue
 SOB

• Allergies: azithromycin (urticaria)

• Home medications: none

- P/E:
 - V/S: 130/81, 109, 97.9, 18, 98% on 2LNC
 - Gen: obese, in no apparent distress
 - Lungs: bilateral basilar dry crackles

Imaging studies

PFTs:
– FVC: 1.68 L (50%)
– FEV1: 1.63 L (58%)
– FEV1/FVC: 0.97
– TLC 2.44 L (46%)
– DLCO 8.1 (28%)

- Laboratory data:
 - ESR: 54 mm/h
 - PL-12 antibody: moderate positive (Mayo Medical Laboratories, Rochester MN)
 - JO-1 antibody: negative
 - PL-7 negative
 - Rest of myositis antibody panel: negative

Anti-synthetase Syndrome Associated Capillaritis

Definition

- Autoimmune syndromé
 - Inflammatory myopathy
 - Arthritis or arthralgias
 - Interstitial lung disease
 - Fever
 - Raynaud's phenomenon
 - Mechanic's hands
- Myositis specific antibodjes: aminoacyltransfer RNA synthetases

1. Katzap E, Barilla-Barca ML, Marder G. Curr Rheumatol Rep 2011;13:175-181.

Proposed[®] Criteria

- An antisynthetase antibody plus two major criteria
- One major criteria plus two minor criteria
- Major criteria:
 - 1. ILD
 - 2. Polymyositis or dermatomyositis
- Minor criteria:
 - 1. Arthritis
 - 2. Raynaud's phenomenon
 - 3. Mechanic's hands

2. Solomon J, Swigris JJ, Brown KK. J Bras Pneumol 2011;37:100-109.

Antisynthetase antibodies

- Myositis specific antibodies
- Aminoacyl-tRNA-synthetases
- 8 antibodies described
 - Anti-Jo-1
 - PL-7

– PL-12 (alanyl-tRNA synthetase)– Others: EJ, OJ, KS, Zo and YRS

3. Labirua A and Lundberg IE. Current Opinion in Rheumatology 2010;22:633-638.

Table 1—Prevalence of Antisynthetase Antibodies in PM/DM*

MSAs (Anti-tRNA Synthetases)	Antigen	Prevalence
Jo-1	Histidyl-tRNA synthetase	15-20%
PL-7	Threonyl-tRNA synthetase	5-10%
PL-12	Alanyl-tRNA synthetase	< 5%
EJ	Glycyl-tRNA synthetase	5 - 10%
OJ	Isoleucyl-tRNA synthetase	5%
KŠ	Asparaginyl-tRNA synthetase	< 5%
Zo	Phenylalanyl-tRNA synthetase	< 1%
YRS	Tyrosyl-tRNA synthetase	< 1%

*Adapted from Table 1 in the article by Mimori et al.¹

4. Kalluri M, Sahn SA, Oddis CV et al. CHEST 2009;135:1550-1556.

Clinical Features

Manifestation	Incidence, %	Subsets	Comments
ILD	70-90	NSIP, COP, DAD, UIP	May precede myositis
Myositis	78-91	Acute, subacute, late onset, subclinical	Jo-1: PM>DM PL-7 and PL-12: Amyopathic
Raynaud's	62	With or without Sclerodactyly	
Arthropathy	64-83	Arthralgia, polyarthritis	
Fever	20	No pattern	
Mechanic's hands	17-71	Hyperkeratosis	

5. Watanabe K, Handa T, Tanizawa K et al. Respiratory Medicine 2011;105:1238-1247.

Anti-PL12 Phenotype

- Median age: 51 years (range 21 to 87)
- 81% females
- 52% African-American
- 90% with associated connective-tissue disorder
 - 32% PM
 - 19% DM
 - 16% Overlap syndromes

Anti-PL12 Phenotype

- 90% with ILD
- ILD preceded CTD diagnosis in 53% of cases
 - UIP 46%
 - COP 18%
 - NSIP 18%

 Less fever and mechanic's hands; variable Raynaud's

Anti-PL12 Phen@type...

- Radiographic findings:
 - Interlobular septal thickening (73%)
 - Traction bronchiectasis (59%)
 - Honeycombing (41%)
 - Ground-glass opacities (36%)
 - Lower-lobe predominance (82%)

1-3 Therapy

- Glucocorticoids (1 mg/kg)
- Other:
 - Cyclophosphamide
 - Azathioprine
 - Mycophenolate mofetil (MMF)
 - Cyclosporine, tacrolimus
 - Rituximab
 - Intravenous immunoglobulin (IVIG)

Unique features in this case

- Capillaritis and diffuse alveolar hemorrhage
- 3 case reports
 - Paraneoplastic dermatomyositis
 - 2 Polymyositis (one patient with anti-Jo1 Ab)

6

7

 No prior association between PL-12 antibodies and capillaritis

Do-Pham G, Pages C, Picard C et al. British Journal of Dermatology 2010;163:208-234.
 Schwarz MI, Sutarik JM, Nick JA et al. Am J Respir Crit Care Med 1995;151:2037-2040.

Clinical Pearls

- Antisynthetase syndrome has a high prevalence of ILD
- Patients with ILD should be screened for the presence of antisynthetase antibodies
- ILD can precede the presence of myositis and other symptoms
- Anti-PL12 phenotype can be associated with capillaritis and diffuse alveolar hemorrhage

• 53 y/o AAF

• Progressive DOE for 1 week

• Fever

hemoptysis

- PMH: CKI SLE (pleuritis and pericarditis) DVT/PE A Fib Hepatitis B Sickle cell trait
- PSH
 C-section
- SHX:
 - 1ppd smoker + Crack cocaine

• Medications:

Colace Warfarin Oxycodone Lisinopril Plaquenil Prednsione (10mg daily) Carvedilol Ambien

• PE:

VS: T: 100.6; P: 92; RR: 20; BP: 155/89; O2 sats 96% on 4 LPM

Lung: Bibasilar crackles (non-velcro)

Remainder of PE unremarkable

 LABS U/A: > 300 protein, 7 RBC**INR 0.93 WBC: 10** HgB: 9.7 **PLTs: 609** Cr: 2.2

- ANA: 1:1280 speckled
- Ds DNA 30.6 (<30)
- RO: 141.7 EU
- LA: 121.4 EU
- Anti- Smith: 0.9 EU

- C3: 155 mg/dl
- C4: 79.2 mg/dl
- Cryoglobulins: negative
- ANCA: 1:1280
 perinuclear staining
- + MPO

Bronchoscopy with BAL

- progressive bloody return
 - cytology: abundant hemosiderin laden macrophages
- micro studies negative including respiratory viral PCR

Causes of Diffuse Alveolar Hemorrhage Syndromes (DAH) Based on Histologic Appearance

Capillaritis

Systemic vasculitides

Wegener's granulomatosis Microscopic polyangiitis Henoch-Schoenlein purpura Cryoglobulinemia Behcet's syndrome

Collagen vascular diseases

Systemic lupus erythematosus* Polymyositis Rheumatoid arthritis Scleroderma Mixed connective tissue disease

Other

Isolated pulmonary capillaritis Goodpasture's syndrome* Primary antiphospholipid syndrome Pauci-immune glomerulonephritis Autologus bone marrow transplant Lung transplant rejection Idiopathic pulmonary fibrosis Infective endocarditis Retinoic acid syndrome Propylthiouracil

Phenytoin

Bland hemorrhage

Goodpasture's syndrome* Systemic lupus erythematosus* Idiopathic pulmonary hemosiderosis Severe coagulopathies Mitral stenosis Trimellitic anhydride inhalation Penicillamine, nitrofurantoin, amiodarone Rapamycin

Diffuse alveolar damage

ARDS (any cause) Cytotoxic drug toxicity Polymyositis Systemic lupus erythematosus Crack cocaine inhalation Infections in the immunocompromised host

Miscellaneous conditions

Lymphangioleiomyomatosis Tuberous solerosis Pulmonary veno-occlusive disease Pulmonary capillary hemangiomatosis Pulmonary infarction

*Both bland hemorrhage and DAH with capillaritis can be seen in these conditions.

Acute Lung Injury with Crack

- Typically develops within 1-48 hours
- 25% of users with develop respiratory symptoms including fever, cough, nonspecific chest pain, hemoptysis, back pain, hyperpnea, dyspnea, melanoptysis, wheezing
- Diffuse pulmonary infiltrates, eosinophilic pleural effusions, acute lung injury pattern
- Eosinophilia

Chronic Exposure to Crack

- Pulmonary fibrosis
- Diffuse alveolar hemorrhage
- Hemosiderosis
- Pulmonary infarction
- Eosinophilic interstitial lung disease
- Bullous emphysema
- Medial artery hypertrophy
- Noncardiogenic pulmonary edema
- Increased risk of pneumonia, multifactorial problem

Microenvironment and Cocaine

- Cocaine inhibits alveolar macrophages ability to kill most bacteria and tumor cells in vitro
- Cocaine users are unable to kill bacteria using nitric oxide as an antibacterial effector molecule
- These changes may predispose to increase pulmonary infections in these users
- Marijuana has similar adverse effects. Inhibits phagocytosis Staph aureus

Crack Pulmonary Injuries I

- Barotrauma, ischemia, provocation of inflammatory damage, and direct cellular toxicity
- Barotrauma is the result of Valsalva maneuver after inhalation and the forceful inhalation of air into partners. Pneumothoraces, pneumomediastinum, and pneumopericardium
- Ischemia is the result of the vasoconstrictive properties
- Severe bronchospasm in patients with preexisting asthma

Treatment of Crack Lung

- Need to make history of exposure
- Supportive
- Role of steroids unproven, helpful in those patients with bronchospasm
- Screen for HIV and concomitant drugs
- Drug treatment

ANCA in DAH Diagnosis

- Antineutrophilic cytoplasmic antibodies (ANCA)first described in 1982 in association with pauci-immune glomerulonephritis
- ANCA described in association with GPA in 1985
- Subsequently described in microscopic polyangitis (MPA) and limited renal vasculitis

Davies DJ, et al. Br Med J 1982; 285:606 Van der Woude FJ, et al. Lancet 1985; 1:425 Falk RJ, et al. N Engl J Med 1988; 318:1651

Name	Vasculitic Lung Involvement	ANCA Findings
Large vessel vasculitis		
Giant cell (temporal) arteritis	Rare	No
Takayasu arteritis	Frequent	No
Medium-sized vessel vasculitis		
Polyarteritis nodosa	Rare	No
Kawasaki disease	No	No
Small vessel vasculitis		
WG	Frequent	PR3-ANCA
CSS	Frequent	MPO-ANCA or PR3-ANCA
MPA	Frequent	MPO-ANCA or PR3-ANCA
Henoch-Schönlein purpura	No	IgA-possible
Essential cryoglobulinemic vasculitis	No	No

TABLE 22-1 Systemic Vasculitides*

*Systemic vasculitides as defined by the 1992 Chapel Hill international consensus conference on the nomenclature of systemic vasculitis.⁸ ANCA = antineutrophil cytoplasmic antibodies; CSS = Churg-Strauss syndrome; MPA = microscopic polyangiitis; MPO = myeloperoxidase; PR3 = proteinase 3; WG = Wegener's granulomatosis.

ANCA Testing

- Indirect immunofluorescence assay (IIA) is more sensitive
- Enzyme link immunosorbent assay (ELISA) is more specific
- Best used in conjunction with IIA for screening and ELISA for confirmation
- Two relative antigens in vasculitic diseases, proteinase 3 (PR3) and myeloperoxidase (MPO)
- Antigens are found in neutrophils and monocytes
- PR3-ANCA and MPO-ANCA

Immunofluorescence Patterns In Vasculitis

- Sera from patients with suspected ANCA related vasculitis are incubated in ethanol fixed neutrophils
- Two distinct patterns of fixation identified, c-ANCA with cytoplasmic pattern and p-ANCA with perinuclear pattern
- c-ANCA pattern is typically associated with antibodies against PR3
- p-ANCA is typically associated with antibodies against MPO

C-ANCA pattern Demonstration of **cytoplasmic** antineutrophil cytoplasmic antibodies (C-ANCA) by indirect immunofluorescence with normal neutrophils. There is heavy staining in the cytoplasm while the multilobulated nuclei (clear zones) are nonreactive. These antibodies are usually directed against proteinase 3 and most patients have Wegener's granulomatosis. Courtesy of Helmut Rennke, MD.

P-ANCA pattern Demonstration of **perinuclear** antineutrophil cytoplasmic antibodies (P-ANCA) by indirect immunofluorescence with normal neutrophils. Staining is limited to the perinuclear region and the cytoplasm is nonreactive. Among patients with vasculitis, the antibodies are usually directed against myeloperoxidase. However, a P-ANCA pattern can also be seen with autoantibodies against a number of other antigens including lactoferrin and elastase. Non-MPO P-ANCA can be seen in a variety of nonvasculitic disorders. Courtesy of Helmut Rennke, MD.

Cocaine and ANCA association

- >70% of illicit cocaine is cut levamisole
- Levamisole-contaminated cocaine is associated with ANCA vasculitis
- Largest series described (n=30)

```
arthralgias (83%)
skin lesions (61%)
constitutional symptoms (72%)
MPO-ANCA (100%)
PR3-ANCA (50%)
Leukopenia (28%)
Abnormal U/A (27%)
Pulmonary hemorrhage (7%)
```

McGarth MM, et al. Clin J Soc Nephrol 2011; 6:2799.

• 38 y/o AAF

Chronic and progressive DOE

• DOE reproducible at 30 feet

• PMH: BPAD Endometriosis +PPD s/p INH x 6 mos CLB Migraines PSH **Oophorectomy** • SHX: 2ppd smoker

• Medications:

Elavil Azithromycin Baclofen Citalopram Neurotonin Methocarbamol Topomax

• PE:

VS: T: 98.3; P: 88; RR: 20; BP: 140/80; O2 sats 94% on 4 LPM

Lung: Bibasilar crackles (non-velcro) with radiation to axilla

Remainder of PE unremarkable

• PFTS:

FVC 38% of pred. FEV1 34% of pred FEV1/FVC ratio 92% of pred DLCO 39% of pred

• 6 MW

810 feet O2 desat to 84% on 4 LPM appropriate CV response to excercise

Desquamative Interstitial Pneumonia

	DIP	RBILD	PLCH	IPF
Smoking (%)	90	100	>90	41-83
Age	3 rd -5 th decades	3 rd -5 th decades	3 rd -4 th decades	Middle aged to older
Occurrence in children	Rare	NO	Rare	Rare
Onset	Insidious	Insidious	Insidious	Insidious
Presenting sxs	Dyspnea, cough	Dyspnea, cough	Dyspnea, cough	Dyspnea, cough
Crackles (%)	60	50	Usually absent	100
Clubbing (%)	Nearly 50	Rare	Rare	50-70
CXR	Interstitial, patchy ground- glass	Interstitial or normal	Interstitial/cystic or nodular, with basilar sparing	Interstitial, honeycombing basilar predominance
HRCT	Ground glass with lower lung predominance	Patchy ground glass	Nodules and cyst; basilar sparing	Subpleural honeycombing; basilar predominance
PFTs	Restrictive	Mixed defect to normal	Obstructive or restrictive	Restrictive
Treatment	Smoking cessation, steroids	Smoking cessation	Smoking cessation; ?steroids	None
Response of steroids	Good	Good	Fair	Poor
Prognosis	Good	Good	Fair	Poor
Complete recovery possible	Yes	Yes	Yes	No

References

- 1.Liebow AA, et al Am J Med 1965; 39:3619-404
- 2. Desai SR, et al. Clin Radiol 2003; 58:259-268
- 3. Lynch DA. *Radiol Clin* North Am 2002; 39:1153-1170
- 4. Ryu JH, et al *Eur Respir* J 2001; 17: 122-132
- 5. Ryu JH, et al. *Chest* 2005; 127:178-184
- 6. Katzenstein AA, Myers JL. Am J Respir Crit Care Med 1998; 157:1301-1315

• 53 year old male

6 months of progressive DOE and cough

• Dry cough

• 2 years treated for several bouts of "walking pneumonia" and bronchitis

• PMH:

hypothyroidism hyperlipidemia thrombocytopenia **NASH** cirrhosis • PSH: chole sinus surgery

• Medications:

synthroid 100 mcg daily loratadaine 10 mg daily pravastatin 80 mg daily flonase prn naproxen prn Social Hx: life-long non-smoker; no ETOH or illicit drugs; no birds, asbestos, hot-tubs; humidifiers

• Family Hx:

Sister deceased secondary to IPF and lung transplant complications

- PE: AF/ 76/ 18/ 140/79/ 94% on room air
- Pertinent positives: bi-basilar crackles
- 6MWT on room air: O2 desaturation to 83%
- PFTS: FVC 58% of predicted; FEV1/FVC ratio 0.85; TLC 55% of predicted; DLCO 42%
Case presentation

• ANA, RF, CCP negative

Case presentation

Case presentation

Case Presentation

 Diagnosis: Chronic Hypersensitivity pneumonitis

 More History: Prior home with water damage

• HP panel: positive for A flavus

Acknowledgment

 Ellen Riemer, MD (Dept. of Pathology, MSUC)