Detection and Treatment of Tuberculosis in Correctional Facilities: Opportunities and Challenges

David Karol, MD, MA
Bureau of Prisons, FMC Butner
Duke University Medical Center
June 26, 2013
No Disclosures
Primary Objective

The listener will gain an understanding of the unique opportunities and challenges surrounding detection and treatment of tuberculosis in correctional facilities.
Outline

Part I: Overview of tuberculosis (TB) in correctional facilities

Part II: Identification and containment of TB disease in correctional facilities

Part III: Treatment of latent TB infection (LTBI) in correctional facilities
Part I: Overview of TB in Correctional Facilities
TB in Correctional Facilities

- ~3% of all new TB cases are reported from correctional facilities\(^1\)
- ~40% of all those in the US with active TB disease passed through a correctional facility in 1997\(^2\)
- Jail inmates: 17x TB prevalence in the US population
- Prison inmates: 4x TB prevalence in the US population

1. CDC 2003.
Infectious Disease Burden

<table>
<thead>
<tr>
<th>Condition</th>
<th>Prevalence of Inmates (Jail and Prison)</th>
<th>Number of Inmates with Condition</th>
<th>Number of Releasees with Condition</th>
<th>US Population Total with Condition</th>
<th>Releasees/US Population with Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV</td>
<td>1.45–2.03%</td>
<td>35,093–45,522</td>
<td>150,000–196,000</td>
<td>750,000</td>
<td>20.1–26.2%</td>
</tr>
<tr>
<td>AIDS</td>
<td>0.5%</td>
<td>9212</td>
<td>38,894</td>
<td>247,032</td>
<td>15.7%</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>17–25%</td>
<td>303,507–446,338</td>
<td>1.3–1.9 million</td>
<td>4.5 million</td>
<td>29.4–43.2%</td>
</tr>
<tr>
<td>Active TB</td>
<td>0.04% (P) 0.17% (J)</td>
<td>1451</td>
<td>12,531</td>
<td>31,660</td>
<td>39.5%</td>
</tr>
</tbody>
</table>

Am J Public Health, 2002;92:11
Why the high prevalence of TB?

• Inmate factors
 – Intravenous drug and alcohol use
 – Low socioeconomic status
 – HIV
 – Lack of medical care prior to incarceration

• Structural factors
 – Close living quarters
 – Poor ventilation\(^4\)
 – Overcrowding

• Transient population = difficulty in controlling disease

Overcrowding
Incarcerated Americans
1920-2006

Sources:

Rates of Incarceration/100,000 Worldwide

United States
Russia
Cuba
South Africa
England
Canada
Australia
Germany
India
Japan

Response to Crisis

- US Supreme Court 2009: California must operate at 137.5% of capacity (~110K)
- 0.9% annual decline in state and federal inmate population, from 1,614,000 to 1,599,000 (70% due to CA realignment)^5
- Reduction in sentence/compassionate release

5. BJS, 2011.
Is the pendulum swinging?
Public Health Opportunities and Challenges: Focus on Jails

- Prevalence of active TB in jails 4x prevalence in prisons (0.17% vs. 0.04%)
- Population increasing in jails, currently ~745K (1.2% annual increase)
- Approximately 11.6 million persons were admitted to jails in 2012 (~2.5% of US population)
- Length of stay measured in hours to days

BJS, 2012.
Part I (Overview)

• Prevalence of TB disease is 0.04% in prisons and 0.17% in jails
• Prevalence of TB disease in correctional facilities 4-17x the prevalence in US population
• Inmate factors, environmental factors, and frequent movement and short length of stay of inmates contribute to TB prevalence and containment challenges
• Recent decline in prison population and increase in jail population emphasizes important focus areas
Part II: Identification and Containment of TB Disease in Correctional Facilities
Defining Facility’s TB Risk

Minimal risk:

– No cases of infectious TB in the last year
– Facility does not house substantial numbers of inmates with risk factors for TB
– Facility does not house substantial numbers of new immigrants from areas with high rates of TB
– Employees at the facility are not otherwise at risk of TB

CDC, 2006.
Screening for TB

Primary goal: Identify inmates who are likely to have infectious TB before integration into general population

Secondary goal: Identify inmates with latent TB infection (LTBI)

- History and symptom assessment
- Mantoux tuberculin skin test (TST)
- Interferon Gamma Release Assays
- Chest Radiograph Screening
History and Symptom Assessment

- Most rapid screening test
- Easy to administer
- Staff should be trained on procedures for isolation
- Not adequate alone, except in minimal risk facilities
- Often fails to detect pulmonary TB; LTBI only detected by history
Mantoux TST Screening

- TST plus symptom assessment most common method of screening for TB
- Sensitivity ranges from 75-90%; highly nonspecific
- Need for reading after 48-72 hours of placement especially problematic in jails
- Inmates with positive TSTs should have a chest X-ray performed within 72 hours of reading
- Two-step testing may not be practical in jails

CDC, 2006.
How Do Jails Perform?

1986 internal Cook County Jail audit:

• For 49% of inmates with a positive TST, medical personnel took 50 days or more to follow up

• 43% of inmates with positive TSTs were discharged prior to skin test being read

• Mean time to isolation: 17.6 days
How Do Jails Perform?

• A 2006 study of 20 large U.S. jail systems:
 – 95% (19/20) had policies for screening inmates on intake
 – 85% (17/20) asked inmates about a cough; policies for other symptoms varied
 – 85% (17/20) had policies for universal screening within 14 days; 71% (12/17) had policies for TST placement within 24 hours
 – One jail system with voluntary TSTs: 13% placement rate

Am J Prev Med 2006;30(2)
Interferon Gamma Release Assay

Advantages
- Higher specificity and at least as sensitive as TSTs for detection of TB disease\(^6\)
- Only single visit required
- Result unaffected by previous BCG vaccination result
- No boosting effect

Limitations
- Need for phlebotomy
- Lab process time of 8-30 hours\(^7\)
- Higher direct cost per test
- Lack of clinical experience in interpreting results
- Negative test does not exclude possibility of TB infection

\(^6\) Exp Rev Mol Diag 2006, 6(3).
\(^7\) CDC, 2011.
Chest Radiograph Screening

• Can increase TB case-finding rate
• Enables quicker isolation of suspected TB cases\(^8\)
• Cost-effective\(^9\)
• Cook County Chest-X-ray screening compared to TST (1992-94):\(^{10}\)
 • 43 vs. 26 cases of active TB/year
 • Time to isolation reduced from 17.2 to 2.3 days
• Bureau of Prisons study: no change in disease detection in foreign-born inmates, but 8-fold increase in isolation and diagnostic work-up\(^{11}\)

11. Pub Hlth Rep, 2001(116)
Summary: Part II (Screening)

• First step: Identify facility’s risk of TB transmission
• Two goals:
 – Identify cases suspected of TB disease
 – Identify LTBI
• Symptom assessment and TST most common method of screening
• Universal CXR, IGRAs may be considered in high-risk and/or short-term facilities
Part III: Treatment of LTBI in Correctional Facilities
<table>
<thead>
<tr>
<th>Drugs</th>
<th>Duration</th>
<th>Interval</th>
<th>Minimum doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>9 months</td>
<td>Daily</td>
<td>270</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>6 months</td>
<td>Twice weekly*</td>
<td>76</td>
</tr>
<tr>
<td>Isoniazid & Rifapentine</td>
<td>3 months</td>
<td>Once weekly*</td>
<td>52</td>
</tr>
<tr>
<td>Rifampin</td>
<td>4 months</td>
<td>Daily</td>
<td>12</td>
</tr>
</tbody>
</table>

Use Directly Observed Therapy (DOT).
Table 4. Evaluation and treatment outcomes in jails versus prisons among inmates who had positive tuberculin skin test

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Jails (%)</th>
<th>Prisons (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete tuberculosis evaluation</td>
<td>17.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Prior adequate therapy</td>
<td>3.2</td>
<td>27.4</td>
</tr>
<tr>
<td>Treatment completed</td>
<td>33.6</td>
<td>57.7</td>
</tr>
<tr>
<td>Lost before treatment completed a</td>
<td>53.9</td>
<td>17.0</td>
</tr>
</tbody>
</table>

aLost includes patients who moved, were paroled, or were transferred from the facility.
Why bother treating LTBI in jails?

- Low medication adherence rates upon release12
- Poor follow-up13
- Bandyopadhyay et al (2002)14:
 - 82/168 (49%) releasees presented to clinic
 - 33/82 (40%) had to be restarted on therapy
 - 35/82 (55%) completed adequate course
 - 2.68 reactive TB cases prevented
 - Projected cost savings of $9,277/4.5 years

12 Am J Respir Crit Care Med 1997;155.
13 Am J Public Health 1988;88.
14 Chest, 2002;121.
Isoniazid/Rifapentine

- Shorter regimen (3 vs. 4, 6 or 9 months)
- Directly observed INH/RPT as efficacious as self-administered INH with higher completion rate\(^\text{14}\)
- Cost-effective in general population\(^\text{15, 16}\)
- Not to be used in patients with HIV/AIDS on anti-retrovirals or in pregnant patients
- Should not be used in facilities with INH- or RIF-resistant *M. tuberculosis* strains

Summary: Part III (LTBI)

- Treatment of LTBI in jails challenging but potentially cost-effective and beneficial to public health
- INH/rifapentine promising regimen, particularly for short stays
Conclusion

• Significant representation of both TB disease and LTBI in correctional facilities makes for great public health opportunity
• TB in correctional facilities affects the general community
• Transient jail population makes screening and treatment particularly challenging
• Coordinated efforts with local public health authorities extremely important
Questions?